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Abstract

Background: Much of science, technology, engineering, mathematics, and medical (STEMM) education policy and
research centers around developing the upper levels of the STEMM workforce sector. However, there are many
positions in this workforce, “middle-skill careers,” that are largely responsible for executing the innovations and are
largely ignored in STEMM education research.

Results: Using data from the National Educational Longitudinal Study of 1988, we found differences in what
predicts STEMM-related vs. non-STEMM careers across skill-level. For instance, underrepresented minorities and
those exhibiting school transgressions are more likely to be working in middle-skill STEMM fields than in middle-skill
non-STEMM fields as adults; the same is not true of the high-skill workforce.

Conclusions: One-size-fits-all policies for broadening participation in the STEMM workforce across skill-level are
unlikely to be successful. Further, programs that are designed to generate wonder and fascination with STEMM
content may be successful in attracting more girls. However, to promote greater participation of individuals from
traditionally underrepresented ethnic minority groups in STEMM, programs that support choices toward higher
educational attainment, specifically four-year college degree attainment, are more likely to be successful.
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Introduction
Policy makers recognize that science-related careers are
important, and mainlining these careers requires focused
investments in education (Augustine 2005; Rothwell
2013). As the United States (US) President’s Council of
Advisors on Science and Technology (PCAST) has
stressed, “education will determine whether the United
States will remain a leader among nations and whether
we will be able to solve immense challenges in areas
such as energy, health, environmental protection, and
national security” (PCAST 2010, p. vii).
The focus of much of the policy and research in science-

related education and the science-related workforce, in the
US and around the world, centers around preparing

individuals for the upper levels of the science-related work-
force, meaning careers that require at least a four-year
undergraduate degree in a science-related field. Many
researchers even use science-related undergraduate degree
attainment rather than job placements as the outcome
measure of their studies (e.g., Maltese and Tai 2011; Eagan
et al. 2010), assuming that it is a close proxy for entering
the science-related workforce. This focus on the upper
echelons addresses concerns about the underrepresenta-
tion of women (e.g., Ceci et al. 2014; Halpern et al. 2007)
and people of color (e.g., Harper and Newman 2016) in
science-related fields. The attention paid to the upper ech-
elons of the science-related workforce is important because
much of the innovation in these fields occurs at this level.
However, the exclusive focus on the upper echelons of

the STEMM workforce, at the exclusion of other career
levels across the science-related workforce ability distri-
bution, is shortsighted because multiple sectors of the
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workforce drive innovation and productivity. In fact,
only a small percentage of US students pursue
advanced degrees in these disciplines and even fewer
of these individuals go on to enter science-related ca-
reers (Cannady et al. 2014; Salzman et al. 2013). Be-
yond these upper echelons of the workforce, there are
many individuals in the science-related workforce that
are largely responsible for executing the innovations.
These positions, defined as “middle-skill careers” and
sometimes called “support occupations” (Solberg et al.
2012), require “some significant education and train-
ing beyond high school but less than a bachelor’s
degree” (Holzer and Lerman, 2007, p. 8; Carnevale et
al. 2013). The distinction between skill-levels of a car-
eer is defined by the typical education level of the in-
dividuals doing the work, rather than the
sophistication of the work itself. Therefore, low-skill
careers require little if any specific knowledge and
therefore are generally filled by individuals with edu-
cations up to and including high school degrees. The
boundary between middle-skill and low-skill careers is
defined by the amount of education beyond high
school, with middle-skill positions requiring on the
job training, an associate’s degree, or equivalent. The
boundary between middle-skill and high-skill careers
is defined by a four-year college degree (Holzer and
Lerman 2007, p. 8; Carnevale et al. 2013).
The size of the overall middle-skill workforce remains

large (Holzer and Lerman 2009; Holzer 2015), despite
the fact that the proportion of all careers that are
middle-skill careers has been shrinking for the past three
decades, from 59% in 1983 to 45% in 2012 (Tuzemen
and Willis 2013). The exact size of the “middle-skill”
workforce in science-related careers is difficult to deter-
mine, largely because it requires estimates of both the
size of the middle-skill workforce and the size of the
science-related career workforce. Estimates of the size of
the middle-skill workforce in the United States range
from 2% (Poole 2008) to 10% (Rothwell 2013) of the en-
tire workforce in the United States. And the estimates of
the size of the middle-skill workforce in science-related
careers range from one-third (Poole 2008) to one-half
(Rothwell 2013; Miller and Kimmel 2012) of science-
related careers. Science-related middle-skill careers,
many of which are in the high-tech industry, grew rap-
idly between 2003 and 2008 (Poole 2008), thus adding to
the difficulty in estimating the size of current science-
related middle-skill workforce and there is concern that
the pool of individuals to fill further expansion of these
positions is insufficient (Dennett and Modestino 2011).
Despite the large proportion of individuals working in

middle-skill science-related careers and the importance
of the work that they do, these careers and the individ-
uals working in them are consistently excluded from

most studies of the workforce in science-related careers
(e.g., Tai, Liu, Maltese, & Fan, 2006; Cannady et al. 2014;
Tyson et al. 2007). Therefore, little is known about this
subgroup of the STEMM workforce, beyond economic
and career-related studies estimating their size and con-
tributions to the economy. In particular, there are few
studies in the literature that consider the characteristics of
individuals and their families related to selection into
science-related middle-skills careers. Do the same know-
ledge, attitudinal, and demographic factors that predict
participation in science-related middle-skill careers vs
non-science-related middle-skill careers also predict par-
ticipation in high-skill science-related careers vs non-
science-related high-skill careers? As described below,
there are many reasons to suspect that different factors
will be important across these two skill-levels.
The goal of this study is to strengthen knowledge of

the science-related middle-skill workforce. Many of the
papers described above use variations in the definition of
science-related careers and fields, but most often these
include science, technology, engineering, and mathemat-
ics (STEM). We follow the approach of Miller and
Solberg (2012) and many others (e.g., Lent et al. 2000;
Eccles 1986; Maple and Stage 1991) to consider science-
related fields to be those that are a part of the science, tech-
nology, engineering, mathematics and medical (STEMM)
industries and often require educational attainment in these
fields. We use data from the National Educational Longitu-
dinal Study of 1988 (NELS:88), a dataset that has informed
our understanding of high-skill STEMM careers (Maltese
2008). Our investigation will describe the demographic
characteristics of the middle-skill STEMM workforce and
high-skill STEMM workforce, and then compare these to
the characteristics of the same skill level non-STEMM
workforce. This analysis allows us to determine if the things
that differentiate STEMM vs non-STEMM high-skill
workers are the same as those that differentiate middle-skill
STEMM and non-STEMM workers. This effort is import-
ant when considering whether educational policies focused
on increasing the high-skill STEMM workforce are likely to
also benefit the middle-skill workforce or whether differing
policies will be needed for broadening participation in these
two segments of the STEMM labor force.

Theoretical framework
Recognizing that there are many factors influencing
career choice, we draw upon the Social Cognitive Career
Theory (SCCT) (Lent et al. 1994, 2000, 2002; Hartung et
al. 2015), which has been used to investigate career
interest development, selection of academic and career
options, and persistence in educational and professional
pursuits (e.g., Larson et al. 2015; Sax et al. 2016; Wang
2013). This framework, rooted in Bandura’s (1986) more
general social cognitive theory, “emphasizes the means
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by which individuals exercise personal agency in the
career development process, as well as extra-personal
factors that enhance or constrain agency” (Lent et al.
1994, p. 79). Like other career development theories
(e.g., Holland 1997; Dawis and Lofquist 1984; Osipow
1990), SCCT recognizes that a person’s agency in select-
ing and pursuing a career is nested within a societal
context and that the person and society interact in de-
termining an individual’s behavior. What differentiates
SCCT from other career theories is the recognition that
the career decisions are co-determined by the interaction
of a person and their environment. That is, a person “in-
fluence[s] the situations that, in turn, affect their thoughts,
affect and [subsequent] behavior” (Bandura 1986, p. 4 as
quoted in Lent et al. 1994, p. 82).
Such a framework is useful in the current context as

we consider the individual, environmental, and behav-
ioral factors that relate to the decision to pursue a
STEMM career over a non-STEMM career, while also
attending to the individual, environmental, and behav-
ioral influences on postsecondary academic attainment.
In general, the environment (e.g., parental support), the
individual (e.g., interests and skills), and their behaviors
(e.g., completing college applications) each play a role in
both STEMM vs. non-STEMM and bachelor’s degree vs.
no bachelor’s degree decisions. However, the relative im-
portance of each of these factors in shaping different
kinds of STEMM career decisions is not well known.

Literature
Person: dispositions, attitudes, and characteristics matter
Individual expectations for future STEMM careers are
important predictors of later STEMM outcomes. Robert
Tai and colleagues (Tai, Liu, Maltese, & Fan, 2006; Tai,
Ward, & Sadler, 2006) found that eighth-grade science or
engineering career expectations were positively related to
STEMM degree completion. Moreover, the importance of
interest and identity seems to increase as one progresses
along the pathway toward a STEMM career. For example,
several studies have reported that students with high levels
of preparation and skill in math and science select out of
STEMM majors or may not choose STEMM careers un-
less they are sufficiently interested in the discipline (Bester-
field-Sacre et al. 1997; Dick and Rallis 1991; Lubinski and
Benbow 2006; Masnick et al. 2009). Consistent with these
findings, research drawing on the Study of Mathematically
Precocious Youth (e.g., Lubinski et al. 2006) has reported
that interest and identity play critical roles for STEMM de-
gree earners who go on to careers in the highest echelon of
STEMM professions. This suggests that intrinsic interest
in the discipline may be a particularly important differenti-
ation among high-performing individuals.
Further, research has shown substantial differences

between genders in the pursuit of STEMM degrees

(Nicholls et al. 2010) and advancement in the STEMM
academic career path (Rapoport et al. 2004). Some re-
searchers attribute this difference to the reconciliation of
multiple identities, a complex undertaking that white
males in the academy grapple with less often than their
non-white and female counterparts (Carlone and Johnson
2007; Gainor and Lent 1998; Zirkel 2002). Others have ar-
gued that women, when matched on mathematics ability,
tend to have higher verbal ability than men, which creates
more non-STEMM career opportunities for women
(Wang et al. 2013). However, when including medical
fields in the outcome, STEMM, the gender differences are
largely muted (Kimmel et al. 2012).

Behaviors: competencies and math and science course-
taking matter
Math and science competence are good statistical predic-
tors of some STEMM pathway outcomes. Focusing on
mathematics skill, several studies have drawn on high
school SAT-Math scores in nationally representative data-
sets (e.g., Astin and Astin 1992); Nicholls et al. 2010) and
show that math ability predicts academic achievement in
high school, college, and throughout science-related
graduate degrees (Achter et al. 1999; Benbow et al. 2000;
Lubinski and Benbow 2006; Lubinski et al. 2006). Further,
math performance is predictive across STEMM subfields
(Donovan and Wheland 2009) and for important demo-
graphic subgroups (Bonous-Hammarth 2000; Sondgeroth
and Stough 1992). For example, Wai et al. (2005) demon-
strated that SAT-Math scores predict later science-related
career selection and productivity among the highest
echelon of professionals, using tenure, publications, and
patents as proxies for productivity.
In addition to math ability, perceptions of math com-

petence are correlated to key outcomes, including high
school course taking, college major selection, and
STEMM degree persistence (Leslie et al. 1998; Mau
2003; Nicholls et al. 2010). Math confidence seems to be
particularly important for women, who often report
lower math self-concept than their male peers despite
having equivalent or higher achievement (Leslie et al.,
1998). While general academic self-concept has also
been associated with desirable STEMM outcomes, find-
ings suggest that it is a less powerful and less robust
indicator than math self-concept (Astin and Astin 1992;
Mau 2003). While personal measures of math ability and
interest are powerful predictors of success in STEMM
education and careers, so too are course-taking choices
and performance. As a first step, students who pass
algebra by eigth grade are more likely to select and
succeed in high-level math courses in high school
(Adelman 1999, 2006). Then, students who select and
successfully complete high-level math courses in high
school tend to perform better in college STEMM
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courses and are more likely to earn (bachelors and
higher) STEMM degrees (Astin and Astin 1992; Leslie
et al. 1998; Nicholls et al. 2007; Tai et al. 2005; Tai,
Liu, Maltese, & Fan, 2006; Wai et al. 2005).
Several large-scale studies have reported that science

course-taking patterns are associated with key STEMM
outcomes as well (e.g., Adelman 1999, 2006; Tyson et
al., 2007). For instance, Farmer and colleagues (1995)
found that passing an elective high school science course
predicts college performance and persistence in STEMM
undergraduate majors. However, other large-scale stud-
ies suggest that the predictive power of science course
taking in high school may be less generalizable across
STEMM subfields than is math course taking. Studies by
Sadler and Tai (2001, 2007) reported that advanced
course taking in high school physics specifically predicts
college physics performance and degree persistence. A
separate study (Tai et al. 2005) found a similar pattern
for chemistry. Neither study found that the additional
high school course work was a significant predictor of
success in STEMM subfields outside the corresponding
domain. For example, students who take an extra year of
high school physics were not more likely to persist in
earning bachelor degrees in biology.
Taken together, these studies suggest a fairly common

pathway toward STEMM degrees: take algebra by grade
8, take calculus and at least one advanced science course
in high school, proceed straight to college after high
school, select a STEMM major, and graduate with that
major in 4 to 5 years. However, these studies focus on
the upper end of the STEMM workforce, that is, those
working in STEMM fields who have earned at least a
bachelor’s degree. They do not consider links between
these skills and course-taking patterns and careers at the
middle level of the STEMM workforce. It may be that
for associates degrees, which are less selective (i.e.,
accept applicants with weaker academic preparation),
advanced mathematics and science coursework will be
less critical. However, if such experiences and perform-
ance drive attitudes toward STEMM, they may in fact
remain important experiences.

Environment: context matters
Socioeconomic, cultural, and experiential factors also play
a role in students’ pursuit of, persistence in, and, ultim-
ately, attainment of STEMM degrees. For instance, studies
have concluded that knowledge of the education system
(course requirements, college application process, how to
finance one’s education, pre-requisites for certain majors,
and an overall knowledge of how to navigate the ‘system’)
is just as important as academic aptitude for not only
gaining access to postsecondary education but also suc-
cessfully completing a degree (Castleman and Page 2014;
Brody 2006; Eagan et al. 2010). These problems are

especially pertinent for low socioeconomic students who
have less access to advanced math and science courses in
high school and their families are less able to invest re-
sources into their education (Oakes 1990).

Focus on STEMM
Defining science-related careers is not simple, with the
largest debate centering around the inclusion or exclusion
of careers in the medical or health fields. Within the
United States, the National Science Foundation (NSF) has
formally chosen to consider science-related fields as those
fields pertaining to science, technology, engineering, and
mathematics, thereby creating the ubiquitous acronym
STEM. Given that many educational researchers in the US
seek funding from the NSF, much of the research they pro-
duce excludes medical and health fields from their focus of
study. Part of the argument for this exclusion is the belief
that individuals in the medical or health fields rarely con-
tribute to research or the creation of new knowledge,
which is seen as a defining feature of the field of science.
However, using that criteria for inclusion as science-related
careers should exclude many if not most engineers. Fur-
ther, excluding medical and health fields from science-
related careers excludes many of the actual careers youth
aspire to enter and that the exclusion of medical and health
careers is largely gendered both in the perspective of those
careers as being “motherly” and that there is far greater
gender balance in these fields than, for example, in engin-
eering (Kimmel et al. 2012). For this analysis, we have
chosen to append science, technology, engineering, and
mathematics fields to include the medical field and note
this addition by using the acronym STEMM.

Focus on middle-skill careers
Middle-skill careers are widely diverse, but generally re-
quire some amount of postsecondary education or training.
This includes associate’s degrees, vocational certificates,
significant on-the-job training, previous work experience,
or generally “some college” less than a bachelor’s degree
(Holzer and Lerman 2007). Common careers used as ex-
amples of STEMM middle-skill careers include radiology
technicians, engineering technicians, and electricians.
Little is known about the status of the labor market in

the middle-skill positions, most especially the STEMM
middle-skill workforce. It is very difficult to estimate the
current size of the STEMM middle-skill workforce in
the US. The overall STEMM workforce is estimated to
be 6% (Landivar 2013) to 20% (Rothwell 2013) of the en-
tire US workforce, and middle-skill careers are estimated
to account for just under half of all occupations in the
US (Holzer and Lerman 2009; Tüzemen and Willis
2013). However, there is no consensus on the definition
of middle-skill careers, either in the overall workforce or
within the STEMM fields. Further, there are also varying
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definitions of what counts as a STEMM career. As a re-
sult, estimates of what proportion of all STEMM careers
are low, middle, or high skill vary. This lack of clarity on
the size and composition of the middle-skill STEMM
workforce has several explanations. First, the Bureau of
Labor Statistics does not publish estimates of job open-
ings by skill category (Kochan et al. 2012; Holzer and
Lerman 2007). Second, middle-skill careers have not
been the primary focus of STEMM education initiatives
and therefore have largely been ignored by researchers.
Into this void of clarity, Holzer and Lerman (2007) offered
a definition of all jobs within each of the ten broad clus-
ters of occupational categories as high-skill (managerial
and professional/technical occupations), middle-skill (cler-
ical, sales, construction, installation/repair, production,
and transportation/material moving occupations), or low-
skill (service and agricultural occupations) and recognized
that these categories largely aligned with educational
levels. Since then, several researchers have followed their
classifications and definitions of these careers (McDaniel
and Kuehn 2013; Solberg et al. 2012). For instance,
Kochan et al. (2012) used Holzer and Lerman’s definition
of career skill levels and estimated that middle-skill
careers will account for 47% of all new job openings in the
US from 2010 to 2020 (Kochan et al. 2012). In an attempt
to update that research, we used the same methods and
estimated that 42% of all job openings in the US between
2014 and 2024 will be in the in the clusters Holzer and
Lerman identify as middle-skill. Further, throughout this
study, we use Holzer and Lerman’s (2007) definition of
middle-skill careers due to an increased use in the litera-
ture and clear guidance for use in the relevant data sets.
In an attempt to respond to the need for greater clarity

and better information regarding an important compo-
nent of the US STEMM workforce, we sought answers
to the following research questions:

1. What are the characteristics of the overall STEMM
workforce that differentiate them from the non-
STEMM workforce?

2. Are the STEMM vs. non-STEMM differentiating
characteristics the same for high-skill workers as for
middle-skill workers?

Some of the past studies of predictors of STEMM work-
force have a confounded level (i.e., requiring a bachelor’s or
higher degree vs. requiring vocational training or an
associate’s degree) and domain (STEMM or other). For ex-
ample, advanced high school coursework in difficult topics
may generally predict applying for and completing bachelor
degrees rather than specifically STEMM degree comple-
tion. This study is interested in exploring the STEMM vs
non-STEMM decisions for each of the middle-skill and
high-skill career levels. The study is not interested in

determining the difference between middle-skill and high-
skill STEMM workers, as the difference between these two
is defined by their four-year degree status and is far more
likely to be determined by factors with four-year degree
attainment than anything specific to STEMM.

Methods
Data
This study draws data from the National Educational
Longitudinal Study of the Eighth-Grade Class of 1988
(NELS:88), which follows a nationally representative
sample of eighth graders for 12 years, through their
postsecondary education and into their careers (National
Center for Education Statistics, 1988, 1990, 1992, 1994,
and 2000). The data set has been used extensively for
longitudinal studies aimed at informing STEMM educa-
tion policies (e.g., Plunk et al. 2014) and was used to
conduct many of the studies cited earlier in the literature
review section. Importantly, for the purposes of this
study, the NELS:88 collects information on early career
interest, high school course taking, plans for secondary
school enrollment, college completion, including major(s),
and subsequent employment.
The NELS:88 used a two-stage national probability

sample of approximately 24,600 eighth graders enrolled
in public and private schools in 1988. A subset of these
students were resurveyed in 1990 (10th grade), 1992
(12th grade), 1994 (19–20 years old), and again in 2000
(25–26 years old) when many had entered the work-
force. Altogether 12,145 individuals completed the
fourth follow-up survey in 2000 (Curtin et al. 2002).
Our sample consists of individuals who were a part of

the eighth-grade cohort of 1988, had high school tran-
script data, and completed some postsecondary educa-
tion. Our operational definitions for groups used in the
analysis along with missing responses to variables used
in the analysis reduced the overall unweighted sample
size to roughly 3860 (weighted sample sizes are rounded
to the nearest 10). This represents 32% of the total pool
with data from the fourth follow-up survey. The chief
limiting variable was the restriction that participants
complete some postsecondary education. Incomplete
demographic variables caused most of the additional
loss. Analyses of career outcomes in longitudinal studies
are typically restricted in this way.

Outcome variables
Of primary interest in this study were career categories
generated from the interviews conducted at age 26. The
dataset contains some career codes that have been used in
past research; however, more refined codes were needed
to differentiate careers into: STEMM middle-skill career,
STEMM professional, non-STEMM middle-skill career,
and non-STEMM professional. In order to classify
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participants, definitions of each category were created.
First, a list of definitions and examples of STEMM
middle-skill careers was compiled based on information
from the Occupational Information Network (O*NET)
Resource Center (Table 1), which is an online database
with occupational definitions developed by North Car-
olina Employment Security Commission under a grant
from the US Department of Labor/Employment and
Training Administration. Using the occupation codes
already in NELS:88, we filtered 3875 respondents by occu-
pation codes determined to be STEMM-related (Table 2)
and had at least some postsecondary education. This re-
sulted in a list of participants who could potentially be
working in a STEMM career, either as the high-skill or
middle-skill levels. Two researchers then manually read
through each of the job titles for these respondents and
coded them as working in STEMM or not in STEMM and
as requiring middle-skill or as high-skill.
A STEMM high-skill worker was further defined as

someone working in the STEMM field according to their
job category in NELS:88 (Table 2) and who held a bach-
elor’s degree in a STEMM field (Table 3). Any partici-
pant manually coded as having a STEMM middle-skill
career and was subsequently determined to have a bach-
elor’s degree was removed from the middle-skill careers
category and placed in the STEMM professional/high-
skill category to be consistent with the definitional
category of high-skill careers.
Participants who had earned a college degree, whether

it was STEMM or non-STEMM, but were working in a
field with a job code not identified as STEMM were
coded as a non-STEMM professional. Non-STEMM
middle-skill careers were defined as individuals with
some postsecondary education but no bachelor’s degree
and were not working in a STEMM middle-skill career.

Predictors and control variables
Academic behavioral variables
Several behavioral characteristics were included in our
analysis to capture behaviors that are specific to school

and science. We made this decision assuming that an in-
dividual’s science achievement and course selection
manifest from the behaviors individuals exhibit toward
science (Updegraff et al. 1996). Science achievement was
measured using the science item response theory (IRT)
theta scores derived from a science assessment that was
developed by the Educational Testing Service. A broader
measure of academic achievement was used that had com-
bined IRT theta scores of assessments of math and read-
ing skills. Both of these achievement scores came from the
initial wave of data collection (eighth grade, Rock and
Pollack, 1991). Two variables were created to indicate
whether a student had completed an advanced math and
science classes. Completion of an advanced math class
was defined as having taken and passed either calculus or
pre-calculus. Completion of an advanced science class was
defined as having taken and passed biology, chemistry,
and physics at regular or advanced placement (AP) levels;
in the US, only two sciences courses are required for
graduation in most high schools.

Table 3 STEMM major codes in NELS:88

Agriculture Health-medicine

Agricultural science Health-veterinary medicine

Natural resources Nursing-registered nurse

Forestry Health-health/hospital Administration

Computer programming Health-public health

Computer and information
sciences

Health-preparatory programs

Engineering-electrical Health-dietetics

Engineering-chemical Health-pharmacy

Engineering-civil Health-optometry

Engineering-mechanical Biological science-zoology

Engineering-all other Biological science-botany

Engineering technology Biological science-biochemistry

Health/allied-dental/medical
technology

Biological science-all other

Health/allied-Therapy and
mental health

Mathematics-statistics

Health/physical education/
recreation

Mathematics-not statistics

Nursing-nurse assisting Interdisciplinary-integrated science

Agriculture Interdisciplinary-all other

Agricultural science Physical sciences-chemistry

Health/allied-general and
other

Physical sciences-earth science

Nursing-nursing, post-RN Physical sciences-physics

Health-audiology Physical sciences-not Chemistry/
physics/earth

Health-clinical health
science

Transportation-air

Health-dentistry Transportation-not air

Table 2 STEMM occupation codes in NELS:88

Medical practice professionals

Medical licensed professionals

Medical services

Human services professionals

Engineers architects software engineers

Scientist, statistician professionals

Research assistants/lab technicians

Technical/professional workers, other

Computer systems/related professionals

Computer programmers
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Personal variables
A variety of personal characteristics that have been previously
linked to career selection were included: four science-related
attitudinal variables, two categories of student dispositional
variables, and several student demographic variables. Attitude
toward math class was an average of two items from the
NELS:88 survey (I look forward to math class; I think math
will be important in my future). Similarly, attitude toward
science class was calculated by taking an average of the
analogous two items relating to science class. Additionally,
whether or not the student wanted to be a scientist or engin-
eer when they were adults, as well as an indicator variable as
to whether or not the student expected to graduate from
college, were included as predictors.
Additional general academic dispositional variables

that regularly predict academic success were included
(Table 4). Two of these scales were created within the
NELS:88 base year survey self-concept and locus of con-
trol (Rock and Pollack 1991). Student self-concept
(Marsh 1994) was a factor score of the nine-item scale
used by NELS:88 researchers to measure self-concept
and had a high internal reliability of (α = 0.98). Items in

this scale included “I feel good about myself”; “I feel I
am a person of worth, the equal of other people”; “I feel
I do not have much to be proud of” (reverse coded).
Likewise, student locus of control (Mau 2003) was mea-
sured using a factor score that combined responses to
seven items into the NELS:88 scale score. It also had a
high internal reliability (α = 0.98). This scale included
items such as “I don’t have enough control over the
direction my life is taking”; “In my life, good luck is
more important than hard work” (reverse coded); “When
I make plans, I am almost certain I can make them
work.” In addition to the scales within the NELS:88 data,
we created a measure of school transgressions that is
highly reliable (α = 0.99) (Parker and Benson 2004). This
scale included items such as “sent to the office with
school work problems”; “parents received warning about
behavior”; “got into a fight with another student.”
Three student demographic variables commonly associ-

ated with underrepresentation in STEMM were included
in the analysis, gender, native language, and race/ethnicity.
All were taken from the eighth grade interview. Gender
was coded dichotomously, consistent with how the data
was collected in 1988. Students’ native language was
represented with a binary variable that indicated whether
their primary language is English versus another non-
English language. Student race/ethnicity was coded with a
binary variable indicating whether students are a member
of an overrepresented STEMM race/ethnic group (i.e.,
White or Asian) or an underrepresented STEMM race/
ethnic group (e.g., Black, Hispanic, Native American).

Environmental variables
In an attempt to capture the environment individuals
experienced while maturing into their postsecondary and
career decisions, we included variables that captured im-
portant household characteristics. These included parental
educational attainment, nativity status, marital status, and
economic status, as well as, parental expectation that the
student would graduate from college. All five of these
variables were coded using data from eighth grade. More
specifically, parental educational attainment was measured
using an indicator or whether at least one parent earned a
college degree. Parental nativity status was coded dichot-
omously with an indicator of whether both parents were
born in the United States. Marital status was also coded
with a binary variable reflecting whether the student’s par-
ents were married in eighth grade. Family economic status
was measured with an indicator of whether the household
income fell below the Federal Poverty Line. Finally, paren-
tal educational expectations were assessed with a single
indicator of whether at least one parent expected the
student to graduate from college.
Descriptive statistics of all predictor and control

variables are shown in Table 5.

Table 4 NELS:88 survey items used to create scale scores

Items used for self-concept
score
(α = .98)

I feel good about myself

I’m a person of worth, equal of others

I am able to do things as well as others

On the whole, I am satisfied with myself

I certainly feel useless at times

At times I think I am no good at all

I feel I do not have much to be proud of

I feel good about myself

I’m a person of worth, equal of others

Items used for locus of
control score
(α = .98)

I don’t have enough control over my life

Good luck more important than hard work

Every time I get ahead something
stops me

Plans hardly work out, makes me unhappy

When I make plans I can make them work

Chance and luck important in my life

I don’t have enough control over my life

Items used for externalizing
problems scorea

(α = .99)

Student sent to office for misbehaving

Student sent to office with school work
problems

Parents received warning about
attendance

Parents received warning about grades

Parents received warning about behavior

Student got into fight with another
student

aItems were recoded before creating the factor score
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Analysis
A two-fold analysis was undertaken to (1) differentiate
STEMM vs. non-STEMM characteristics overall and
then (2) differentiate for those working as a high-skilled
STEMM professional from high-skilled non-STEMM

professionals and those working in a STEMM middle-
skill career compared to those working in a non-
STEMM middle-skill career.
The selected personal, environmental, and behavioral

measures were first entered into a logistic regression

Table 5 Descriptive statistics for STEMM high and middle-skill careers and non-STEMM high and middle-skill careers

Variable categories Predictor and control variables Variable status STEMM
high-skill

STEMM
middle-skill

Non-STEMM
high-skill

Non-STEMM
middle-skill

Unweighted sample sizea 750 170 3140 1130

Family variables Parents married Yes 94% 86% 89% 82%

No 6% 14% 11% 18%

Parent has degree Yes 55% 28% 54% 25%

No 45% 72% 46% 75%

Parents US born Yes 83% 83% 89% 91%

No 17% 17% 11% 9%

Low income Yes 11% 29% 14% 28%

No 89% 71% 86% 72%

Parent expects college graduation Yes 89% 72% 93% 75%

No 11% 28% 7% 25%

Student demographics Gender Male 56% 80% 43% 61%

Female 44% 20% 57% 39%

Native language English 92% 90% 95% 94%

Non-English 8% 10% 5% 6%

Underrepresented minority Yes 10% 24% 9% 15%

No 90% 76% 91% 85%

Student academic characteristics Took advanced math Yes 19% 9% 10% 2%

No 81% 91% 90% 98%

Took advanced science Yes 58% 24% 40% 16%

No 42% 76% 60% 84%

Wants to be scientist or engineer Yes 17% 10% 8% 5%

No 83% 90% 92% 95%

Attitude toward math (s.e.) .140
(.030)

.091
(.060)

.017
(.016)

−.032
(.025)

Attitude toward science (s.e.) .163
(.034)

.099
(.074)

.002
(.017)

−.013
(.029)

Student achievement Composite score (s.e.) 58.97
(.530)

52.16
(1.09)

57.20
(.318)

48.78
(.654)

Science IRT (s.e.) 50.89
(.640)

48.38
(.937)

49.31
(.243)

43.85
(.618)

Student dispositional characteristics Self-concept (s.e.) .149
(.020)

.149
(.063)

.157
(.015)

0.01
(.029)

Locus of control (s.e.) .178
(.025)

.232
(.076)

.144
(.021)

0.03
(.037)

Good school behaviors (s.e.) .135
(.027)

− .222
(.059)

.142
(.017)

− 0.27
(.045)

Expects to graduate college Yes 90% 71% 92% 67%

No 10% 29% 8% 33%
aRounded to the nearest 10 to protect anonymity
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analysis to determine how well they could differentiate
between individuals working in STEMM fields and non-
STEMM fields overall. Collinearity diagnostics showed
no issues among the predictor and control variables. All
logistic regression models were conducted using the
F4PNLWT sampling weight and the complex sampling
design options (svy commands) within STATA 12. This
sampling weight is for the fourth follow-up complete
panel weight for respondents at all five NELS:88 data
collection points. Using these sampling weights makes the
findings of this study generalizable to a nationally repre-
sentative sample of eighth graders in the spring of 1988.
Next, these same indicators were used in a multinomial

regression with a four-category outcome (STEMM profes-
sional, non-STEMM professional, STEMM middle-skill
worker, non-STEMM middle-skill worker) to illuminate
STEMM vs. non-STEMM differences separately for high-
skill professions and middle-skill careers. Pairwise com-
parisons were used to determine which of these variables
were associated with differences between STEMM vs.
non-STEMM middle-skill workers and STEMM vs. non-
STEMM high-skill workers. The multinomial regression
model, with non-STEMM middle-skills careers serving as
the base outcome, was again conducted using the
F4PNLWT sampling weight and the complex sampling
design options (svy commands) within STATA 12. The
“listcoeff” command was used to perform all relevant
comparisons between the four groups in the model.
The variance inflation factor (VIF) was examined for

each of the predictor variables, as a test of multicolli-
nearity within the model. No variables had a VIF greater
than 2.5 and were therefore deemed to be sufficiently
independent contributions to the model.

Results
Logistic regression: what characteristics differentiate the
STEMM workforce from the non-STEMM workforce?
The overall prediction of STEMM-related career (whether
high- or middle-skill) by the predictor variables was statis-
tically significant; F (19, 3814) = 8.53, p < 0.001. At least
one variable from each of the three aspects of social cogni-
tive career theory was significantly predictive of who was
working in a STEMM career: married parents as an envir-
onmental variable; gender, self-concept, and expecting to
be a scientist or an engineer as person variables, and ad-
vanced courses in math and science, and higher Science
IRT theta scores as behavioral variables (Table 6).
In contrast, there was no significant additional prediction

of pursuing a STEMM-related career by parental education
level, being an underrepresented minority, having native-
born parents, low income status, student native language,
student or parental expectation of college graduation,
general achievement, attitude toward math or science class,
student self-concept, or engaging in poor academic

behaviors. Note that many of these variables in isolation are
associated with pursing a STEMM career on their own, but
these associations disappeared once other variables were
included as controls. For example, attitude toward math or
science class is different as a mean between STEMM and
non-STEMM groups, but does not add significantly as a
predictor when other controls are included.

Multinomial regression
Are the STEMM vs. non-STEMM differentiating character-
istics the same for high-skill workers as for non-middle-
skill workers?
There was an overall significant prediction of group

membership: STEMM professional, non-STEMM pro-
fessional, working in a STEMM middle-skill career, or
working in a non-STEMM middle-skill career; F (57,
3776) = 10.38, p < .001. All possible pairwise compari-
sons revealed significant differences in prediction of
variables by group. However, low-income status, student
native language, parental nativity status, attitude toward

Table 6 Summary of logistic regression analysis for variables
predicting working in a STEMM career vs working in a non-
STEMM career

STEMM career vs. non-STEMM career B Std. Err. e^B

Behavioral variables

Comp. math and reading IRT theta 0.00 0.01 1.00

Science IRT theta 0.04*** 0.01 1.04

Advanced math course 0.48** 0.16 1.61

Advanced science course 0.41** 0.12 1.51

Personal variables

Attitude toward math 0.32 0.30 1.37

Attitude toward science 0.00 0.23 1.00

Science or engineer career expectation 0.37* 0.16 1.45

College graduation expectation − 0.12 0.17 0.89

Self-concept − 0.57* 0.26 0.57

Locus of control 0.25 0.19 1.28

Negative/risky behaviors 0.12 0.12 1.13

Female − 0.43*** 0.11 0.65

English is Native Language 0.05 0.28 1.05

Underrepresented minority 0.13 0.19 1.14

Environmental variables

Parent education 0.03 0.11 1.03

Parent Native US citizen − 0.35 0.20 0.70

Parents married 0.46* 0.19 1.58

College graduation expectation of parent − 0.22 0.18 0.80

Low income − 0.15 0.16 0.86

Constant − 3.23*** 0.54 0.04

Binary coded variables are 1 for yes and 0 for no
Note: eB exponentiated B
*p < .05; **p < .01; ***p < .001
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math class, and student locus of control were not
significant predictors.
First, we describe the difference between STEMM

middle-skill and STEMM high-skill workers. Those
working in high-skill STEMM positions are more likely
to be female, have married parents, have a parent with a
bachelor’s degree, exhibit school conforming behaviors,
expect to work as a scientist or engineer, score higher on
science achievement tests, and take advanced math and
science courses than STEMM middle-skill workers.
Second, comparing STEMM middle-skill workers to

non-STEMM middle-skill workers found that STEMM
middle-skill workers were more likely to have higher sci-
ence IRT thetas, taken an advanced math course, more
likely to have engaged in poor academic behaviors, be
male, and be from a traditionally underrepresented
minority in STEMM (Table 7 shows the significant vari-
ables from post-hoc analyses of the multinomial regres-
sion, non-significant variables, married parents, parental
education level, parental nativity status, low-income
status, parent’s college graduation expectation, student

native language, advance science course taking, attitude
toward science or math class, expecting to be a scientist
or engineer, composite math and reading score, self-
concept, locus of control, and if they expect to graduate
from college are omitted from the post-hoc tests and the
table). It is important to note the direction of the ethni-
city effects: traditionally underrepresented minorities are
actually more likely to be in STEMM middle-skill ca-
reers than in non-STEMM middle-skill careers.
Comparing STEMM professionals to non-STEMM

professionals (see Table 8) found that STEMM profes-
sionals were more likely to be male, have married par-
ents, have higher science IRT thetas and enroll in
advanced math and science courses and were expected
to be a scientist or engineer than non-STEMM profes-
sionals. Non-STEMM professionals, however, had higher
self-concept scores and were more likely to expect to
graduate from a college than STEMM professionals.
Thus, only general science knowledge predicted
STEMM careers for both high-skilled and middle-skilled
careers.

Table 7 STEMM middle-skill careers vs. non-STEMM middle-skill
careers

B Std. Err. e^B

Behavioral variables

Comp. math and reading IRT theta 0.01 0.02 0.50

Science IRT theta 0.05* 0.02 0.51

Advanced math course 1.07† 0.56 0.74

Advanced science course − 0.05 0.35 0.49

Personal variables

Attitude toward math − 0.06 0.72 0.48

Attitude toward science − 0.10 0.56 0.47

Science or engineer career expectation 0.42 0.42 0.60

College graduation expectation 0.12 0.31 0.53

Self-concept − 0.87 0.56 0.30

Locus of control 0.66 0.44 0.66

Negative/risky behaviors 0.42† 0.25 0.60

Female − 0.94** 0.32 0.28

English is Native language 0.61 0.70 0.65

Underrepresented minority 0.72* 0.35 0.67

Environmental variables

Parent education − 0.02 0.31 0.49

Parent Native US citizen − 0.45 0.42 0.39

Parents married 0.06 0.38 0.51

College graduation expectation of parent − 0.23 0.32 0.44

Low income 0.11 0.32 0.53

Constant − 4.72 1.27 0.01

Binary coded variables are 1 for yes and 0 for no
Note: eB exponentiated B
†p < 0.1; *p < .05; **p < .01;

Table 8 Non-STEMM high-skill careers vs. STEMM high-skill careers

B Std. Err. e^B

Behavioral variables

Comp. math and reading IRT theta − 0.01 0.01 0.50

Science IRT theta 0.03** 0.01 0.51

Advanced math course 0.45** 0.17 0.61

Advanced science course 0.45** 0.14 0.61

Personal variables

Attitude toward math 0.25 0.35 0.56

Attitude toward science 0.21 0.26 0.55

Science or engineer career expectation 0.46* 0.18 0.61

College graduation expectation − 0.52* 0.20 0.37

Self-concept − 0.68* 0.30 0.34

Locus of control 0.31 0.22 0.58

Negative/risky behaviors 0.09 0.15 0.52

Female − 0.25* 0.13 0.44

English is Native language 0.11 0.33 0.53

Underrepresented minority 0.04 0.23 0.51

Environmental variables

Parent education − 0.10 0.13 0.48

Parent Native US citizen − 0.37 0.25 0.41

Parents married 0.74** 0.24 0.68

College graduation expectation of parent − 0.32 0.21 0.42

Low income − 0.21 0.18 0.45

Constant − 2.54*** 0.64 0.07

Binary coded variables are 1 for yes and 0 for no
Note: eB exponentiated B
†p < 0.1; *p < .05; **p < .01; ***p < .001
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Conclusion
Middle-skill careers require education and training
beyond high school but less than a bachelor’s degree,
and individuals working in these positions are crucial for
executing technological innovation. Middle-skill careers
have largely been excluded from science education
research, which has tended to focus on broadening par-
ticipation in the high-skill STEMM workforce to women
and traditionally underrepresented minority populations.
In this study, we looked for differences in the composi-
tions of the STEMM and non-STEMM workforce across
the high-skill and middle-skill levels.

Consistency across skill level for STEMM career entry
In this study, we examined factors that predict STEMM
career entry at different skill levels in several ways. Across
all levels of STEMM careers, we found that general
science literacy predicts entry into a STEMM career. That
is, having higher science knowledge predicts STEMM
careers for both high-skill and middle-skill careers. Thus,
efforts to enhance science literacy are promising for
increasing the number of STEMM workers across skill
levels. Similarly, advanced course taking in mathematics,
the only variable in the analysis specific to math achieve-
ment, increased the propensity that an individual worked
in STEMM careers at all skill levels. This suggests that
mathematics aptitude is also important for promoting
careers in STEMM; thus, supporting math achievement
also remains important to support STEMM career entry.

Differences across skill level in STEMM career entry
Several factors emerged that were unique in predicting
STEMM career entrance within each skill level. We found
eight such factors within the high-skill workforce and four
within the middle-skill workforce. Looking across these 12
factors, it is clear that a single strategy to broaden the
STEMM workforce across skill levels is unlikely to work
and instead our efforts must be multifaceted.
For instance, like others, we found that among the

high-skill workforce, advanced science courses (Tyson
et al. 2007) and STEMM career expectation (Tai, Liu,
Maltese, & Fan, 2006) distinguished future STEMM
workers from non-STEMM workers. Further, variables re-
lated to college graduation expectations and self-concept
were predictive of who would enter a STEMM career. We
also found family variables, such as having married parents
and native-born parents, were useful predictors of STEMM
career entry. However, none of those variables were useful
in differentiating STEMM vs non-STEMM workers
when it came to the middle-skill workforce. Instead,
underrepresented minorities and those more frequently
exhibiting school transgressions while in eighth grade
were more likely to be working in middle-skill STEMM
fields than in middle-skill non-STEMM fields as adults.

So, while interventions focused on promoting advanced
science course taking or STEMM career exploration
might be useful for predicting entry into high-skilled
STEMM careers, this is not true for middle-skill careers.
Given that individuals with more frequent school trans-
gressions while in eighth grade were more likely to enter
STEMM middle-skill careers, perhaps within the middle-
skill population, STEMM represents an opportunity for
exploration and an alternative to more traditional path-
ways through schooling. Science may present itself as an
area to feel successful as those working in STEMM
middle-skill careers have higher science achievement
scores than their peers working in non-STEMM middle-
skill careers. Out-of-school learning, in informal environ-
ments, may play a larger role in predicting STEMM career
entry for individuals at the middle-skill level than it does
for those who work in high-skill careers and informal
experiences are rarely, if ever, considered critical factors,
worthy of educational policy, in preparation of the future
STEMM workforce.

Traditionally underrepresented populations in STEMM
We also found an interesting pattern in the distribution of
individuals from traditionally underrepresented minority
populations in STEMM. Some ethnic minority groups
that are traditionally underrepresented in the high-skill
STEMM workforce relative to the population as a whole
are actually overrepresented in the middle-skill STEMM
workforce relative to the middle-skill non-STEMM work-
force. In the United States, racial/ethnic minority popula-
tions are commonly considered to be underrepresented
within STEMM education and STEMM careers. In other
words, there are lower proportions of individuals from
these racial/ethnic groups than there are in the population
as a whole. In our study, when focusing on just high-skill
careers, we did not find a difference in the proportion of
underrepresented minority populations between the
STEMM and non-STEMM workforce. This implies that
the underrepresentation of particular minority popula-
tions is a four-year college degree attainment issue, rather
than an issue specific to STEMM fields. The underrepre-
sentation of racial/ethnic minority populations in high-
skill STEMM careers is similar to the average underrepre-
sentation of the same minority populations in high-skill
non-STEMM careers, such as law, banking, marketing,
and journalism.
Although gaps in educational attainment have been nar-

rowing significantly in recent years, Black and Hispanic
students are still less like to enter postsecondary education
within 8 years of expected high school graduation. Among
high school sophomores in 2002, rates of entry into post-
secondary education were 79% for Hispanic youth, 82%
for Black youth and, 87% for White youth (Cahalan et al.
2016). In recent years, significant progress has been made
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in narrowing gaps in degree completion by race/ethnic
status, there are still dramatic gaps in degree completion
for first generation college students and students from
low-income backgrounds. In particular, students enrolled
in college who are both low-income and first-generation
college are 36% less likely to obtain their bachelor’s degree
than are students who are neither low-income nor first-
generation college. Race/ethnic minority students tend
to be overrepresented among low-income and first-
generation students. Thus, sustained efforts to address
race/ethnic and socioeconomic disparities in college
enrollment and bachelor’s degree completion, such as the
Dell Scholars Program (Page et al. 2016) and other power-
ful interventions that target key psychological barriers to
college success (Aronson et al. 2002; Walton and Cohen
2007 and 2011), show promise for increasing the repre-
sentation of students from race/ethnic minority and socio-
economically disadvantaged backgrounds in high-level
STEMM and non-STEMM fields.
Within the middle-skill workforce, the pattern is starkly

different. The same ethnic minority populations that are
discussed as traditionally underrepresented in STEMM
are actually overrepresented in STEMM middle-skill ca-
reers compared to non-STEMM middle-skill careers. So,
within the middle-skill workforce individuals from these
ethnic minority populations there is greater preference for
working in STEMM than non-STEMM. Together, this
suggests that the underrepresentation of some ethnic
minority populations in STEMM careers is the result of
differences in educational attainment, not discrepancies in
preferences for STEMM careers.
When it comes to the underrepresentation of women in

STEMM fields, the story is quite different. Men are con-
sistently more likely than women to work in STEMM than
non-STEMM careers across all skill-levels. Thus, gender
differences are less likely to be attributed to educational
attainment and more likely to derive from differences in
preferences or other pressures that drive women away
from STEMM careers. There are many factors that influ-
ence why some students are not attracted to certain
STEMM careers. For example, perceptions of computer
science among adolescent females are often negative with
some seeing it as a boring subject devoid of interesting ap-
plications, computing careers as menial, that it is a boy’s
domain, and that it is an individual or anti-social domain
(e.g., Graham and Latulipe 2003, Varma and Lafever 2007,
Wilson 2003). Given these perceptions, it is not surprising
that the percentage of females working in computer fields
actually declined from 34 to 27% between 1990 and 2011
(Landivar 2013). Compounding the problem, educators
often ask learners to acquire knowledge with little context
or with contexts that have little meaning to them (DeClue,
2009). Since female students bring contextual concerns to
their learning (Fisher and Margolis 2002), this lack of

relevance can be a strong deterrent from STEMM fields.
Further, much of the literature on career choice points out
a highly salient fact that is far from gender neutral: career
decisions are made in early adulthood within the con-
text of other life course events (e.g., having children,
getting married) (Kerckhoff 1993; Clausen 1986). As
Xie, Shauman, and Shauman (2003) argue, “gender dif-
ferences in family expectations and the demands of fa-
milial roles may have a significant impact on the timing
and sequencing of women’s science careers.” (p. 9).
Thus, increasing the representation of women in

STEMM fields will require working to increase women’s
preferences for STEMM fields changing the culture of
STEMM fields to be more attractive to women, and
structuring STEMM career entries and advancements
recognizing contextual life events. However, to promote
greater participation of individuals from traditionally un-
derrepresented ethnic minority groups in STEMM, pro-
grams that support choices toward four-year college
degree attainment or changes in the culture of higher
education to be more inviting toward individuals from
traditionally underrepresented ethnic minority groups
are more likely to be successful.
This study considers an often-ignored proportion of

the STEMM workforce, middle-skills workers. It does so
by examining extant data. Analysis of extant data is
inherently restricted to the data that were collected. For
example, the data did not include measures specific of
mathematics ability, spatial ability, or modern concep-
tions of scientific ability that integrate science knowledge
with science practices. We did include many common
predictors of the STEMM workforce. Those predictors
were generally identified through study of the high-skill
workforce. Relying on extant longitudinal data precludes
causal claims of the influence of these variables on our
outcome measures. Further, the data collection ended
when respondents were 26 years old, an early time in
their career trajectory, implying that they may later
switch between STEMM and non-STEMM positions or
from middle-skill to high-skill levels. A replication of
these data using a more recent national dataset (e.g.,
Educational Longitudinal Study: 2002, ELS:02) may be
warranted. The ELS:02 started in 10th grade rather than
in 8th grade and the workforce placement of individuals
in that dataset is likely to be highly influenced by the
economic downturn in 2008, thus reducing the role of
individual agency in career choice.
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